Wednesday, November 4, 2009

Lumen versus candela

The lumen (symbol: lm) is the SI unit of luminous flux, a measure of the perceived power of light. Luminous flux differs from radiant flux, the measure of the total power of light emitted, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light. The lumen is defined in relation to the candela by 1 lm = 1 cd·sr = 1 lx·m2
That is, a light source that uniformly radiates one candela in all directions radiates a total of 4π lumens. If the source were partially covered by an ideal absorbing hemisphere, that system would radiate half as much luminous flux—only 2π lumens. The luminous intensity would still be one candela in those directions that are not obscured.

The candela (IPA: /kænˈdɛlə/, /-ˈdiːlə/, symbol: cd) is the SI base unit of luminous intensity; that is, power emitted by a light source in a particular direction, weighted by the luminosity function (a standardized model of the sensitivity of the human eye to different wavelengths, also known as the luminous efficiency function. A common candle emits light with a luminous intensity of roughly one candela. If emission in some directions is blocked by an opaque barrier, the emission would still be approximately one candela in the directions that are not obscured.
The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 × 1012 hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

The definition describes how to produce a light source that (by definition) emits one candela. Such a source could then be used to calibrate instruments designed to measure luminous intensity, for example.

The candela is sometimes still called by the old name candle, such as in foot-candle and the modern definition of candlepower.


Relationship between luminous intensity and luminous flux
If a source emits a known intensity (in candelas) in a well-defined cone, the total luminous flux in lumens can be calculated by taking the number of candelas, and dividing it by the number in the table below that corresponds to the "radiation angle" of the lamp (the full vertex angle of the emission cone). Example: A lamp that emits 590 cd with a radiation angle of 40°: 590/2.64 = approximately 223 lumens.


The lux (symbol: lx) is the SI unit of illuminance and luminous emittance. It is used in photometry as a measure of the apparent intensity of light hitting or passing through a surface. It is analogous to the radiometric unit watts per square metre, but with the power at each wavelength weighted according to the luminosity function, a standardized model of human brightness perception. In English, "lux" is used in both singular and plural.


Lux versus lumen
The difference between the lux and the lumen is that the lux takes into account the area over which the luminous flux is spread. A flux of 1,000 lumens, concentrated into an area of one square metre, lights up that square metre with an illuminance of 1,000 lux. However, the same 1,000 lumens, spread out over ten square metres, produces a dimmer illuminance of only 100 lux.
Achieving an illuminance of 500 lux might be possible in a home kitchen with a single fluorescent light fixture with an output of 12,000 lumens. To light a factory floor with dozens of times the area of the kitchen would require dozens of such fixtures. Thus, lighting a larger area to the same level of lux requires a greater number of lumens.

Lux versus footcandle
One footcandle ≈ 10.764 lux. The footcandle (or lumen per square foot) is a non-SI unit of illuminance. Like the BTU, it is mainly only in common use in the United States, particularly in construction-related engineering and in building codes. Because lux and footcandles are different units of the same quantity, it is perfectly valid to convert footcandles to lux and vice versa.

Find us on Facebook and Follow us on Twitter

No comments:

Post a Comment